5y^2-126y+25=0

Simple and best practice solution for 5y^2-126y+25=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5y^2-126y+25=0 equation:


Simplifying
5y2 + -126y + 25 = 0

Reorder the terms:
25 + -126y + 5y2 = 0

Solving
25 + -126y + 5y2 = 0

Solving for variable 'y'.

Factor a trinomial.
(1 + -5y)(25 + -1y) = 0

Subproblem 1

Set the factor '(1 + -5y)' equal to zero and attempt to solve: Simplifying 1 + -5y = 0 Solving 1 + -5y = 0 Move all terms containing y to the left, all other terms to the right. Add '-1' to each side of the equation. 1 + -1 + -5y = 0 + -1 Combine like terms: 1 + -1 = 0 0 + -5y = 0 + -1 -5y = 0 + -1 Combine like terms: 0 + -1 = -1 -5y = -1 Divide each side by '-5'. y = 0.2 Simplifying y = 0.2

Subproblem 2

Set the factor '(25 + -1y)' equal to zero and attempt to solve: Simplifying 25 + -1y = 0 Solving 25 + -1y = 0 Move all terms containing y to the left, all other terms to the right. Add '-25' to each side of the equation. 25 + -25 + -1y = 0 + -25 Combine like terms: 25 + -25 = 0 0 + -1y = 0 + -25 -1y = 0 + -25 Combine like terms: 0 + -25 = -25 -1y = -25 Divide each side by '-1'. y = 25 Simplifying y = 25

Solution

y = {0.2, 25}

See similar equations:

| 50+-6=2 | | 5x-45=12x | | 2.5r=110 | | 3g+36=6g-12 | | 6x+49=36+7x | | 3x+19=18x-11 | | 2h+7=69 | | 12y^3-86y^2+14y= | | 60000-300x-3x^2=0 | | 20x^2+65x+15= | | 4(X-3)=20x-12-16x | | p+q+2pq-q+3qp=0 | | 16t^2-126t+50=0 | | 5x+8=3(X+2)+2x | | t^2-5t-126=0 | | 3(X-5)+5=10-3x | | 0=3x^2+6x-72 | | 4y^2+24y+y^2=0 | | 2ac-4ad+bc-2bd= | | 7v=8-1 | | x^3-6x^2+6x-9=0 | | 3x+7+5x+4=27 | | -12t^2+24t+36= | | 2a+ab+3b=15 | | 6(3x-4)+5y=-11x+13+12y | | 4r^3+16r^2-128r= | | 9+5X=.5(18+10X) | | (x^2-25)(x^4-81)=0 | | 37x=2+3x | | 18.5=6(6.5x-2.5) | | (x^2-25)(x^2-81)=0 | | 7p+5-4q+3p-9+9= |

Equations solver categories